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ABSTRACT 

The determination of an orbit by using two heciocentrlc 

positions of a celestial body is a boundary-value problem of 

mathematical physics, and may be reduced to the solution of 

a nonlinear integral equation.     Methods of successive approx- 

imation to the solution are discussed, and convergence 

conditions and error estimates are derived. 

The problems of perturbed motion and the determination 

of orbits based on three geocentric observations are also 

considered. 
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ON THE DETERMINATION OF ORBITS BY THE SOLUTION 

OF A SYSTEM OF INTEGRAL EQUATIONS 

V.  T.  Gontkovskaja 

Bjuil.  Inst.  Theoret.   Astonom. ^(1962),  283-298 

Translated from Russian by L. B. Rail 

One of the basic problems of celestial machanics - the determination of 

an orbit from two heliocentric positions - may be considered to be a boundary- 

value problem of mathematical physics.    Until recently, such problems have 

been solved by integrating differential equations with given initial conditions. 

This reduction ^rom one problem to the other turns out to be possible only 

because the perturbed motion differs only slightly from Keplerian motion in the 

two-body problem, the general solution of which is known for any statement of 

it (either as an initial-value or a boundary-value problem). 

At the present time, a whole series of problems has arisen in connection 

with the conquest of space in which the perturbations are very large, and the 

Keperlian orbit cannot serve as an approximate solution.    Thus, the determination 

of an orbit in such cases is only possible directly from the boundary-value 

problem, for example, by reducing it to an integral equation. 

This method was first proposed by Bucerlus in his fundamental paper, 

"Bahnbestimmung als Randwertproblem. "   Bucerius not only stated the problem, 

but also proposed a method for its solution.    However, the method of successive 
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approximation proposed by him for the solution of the system of integral equations, 

to which the problem of determination of orbits from two heliocentric positions 

reduces, contains a whole series of inaccuracies and does not have a rigorous 

foundation.   Indeed, for the method of successive approximation proposed by 

Bucerius for the solution of systems of integral equations differing somewhat 

from those given here, some conditions given for convergence are obtained as 

a result of non-rigorous reasoning, and, what is very essential,  Bucerius does not 

have any error estimates whatever for his method. 

In this paper, two methods of successive approximation are considered which 

permit the solution of the problem posed by Bucerius.   Sufficient conditions are 

obtained for the convergence of the sequence of approximations to the solution, 

the uniqueness of the solution obtained is proved, and, in addition, estimates 

are given for the error committed by terminating the calculation at the nth 

approximation. 

§1.   Statement of the Problem 

The differential equations of motion in vector form are: 

2                r^) 
f(t)  8-)ni + ra)-= r- . (1) 

lr(t)|3 

We introduce the vector £ (t), which satisfies the equation of uniform rectilinear 

motion 

V0(t)   =0, 

in the form 
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t -t      t-t 

where  r.   and  r     are determined by two heliocentric positions at the times   t. 

and  t-.   Thus, the vector ^(t) - £ (t)   satisfies a second-order differential 

equation with zero boundary conditions, which properly completely define a 

solution. 

By means of the Green's function 

G{t,t') = 
(t-tjHyt«) 

tlf , 

G{t,V)  =G(t',t) 

the problem may be reduced to the solution of the nonlinear integral equation 

r(t)=r  (t) + )c2(l+m)/ G(ttt') "^^ dt . 
t. |r(f)|3 

(2) 

If the time t. is taken to be the beginning of the measurement of time, 

and the difference t - t as a unit of time, then the time t varies over the 

interval [0,1].    The kernel of the integral equation takes the form 

K(t,t')  = 

td-t'), t<t' 

• t'd-t),        t^t1 

and equation ( 2) may be written in the following fashion 

2 r1                 I^') 
r(t)=r (t) + T   /K(t,f);  

U 0 lr(f) 
3   M  > (3) 
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where 

T =k^l + m (t2 - t^ . 

Since the vectors  r ,r.,r2 are coplanar, the relationship 

holds, where 

r(t) = nJ(t)r1 + n2(t)r2 , (4) 

n1(t) = n1(t,t1,t2,(r1,r2)   , 

n2(t)=n2(t,t1,t2,r1,r2)   . 

Interpreted geometrically, n. ,n    are the ratios of the areas of the triangles 

n1(t) = 
i££9] 

nJ t) = 
UiZJ 

rfc/    fr.rj   '        "2W   [r.rj    ' 

With the help of relationship (4), the integral equation (4) reduced to the two 

integral equations 

,   1 
n^t) =1 -t-1 -Ttf/K(t,t')« 

n (t) =t + T2 jK{t,t')- 

n^f) 

n1(f)r1+n2(f)r2 
J dt, ' 

n2(f) 

n1(f)r1+n2(f)r2! 
dt' )(5) 

n1(f)r1+n2(t')r2|3 = ! n^ t^r^ + n^ t')r2 + Zn^ f)n2{ t')^^^! 3/2 . > 

§2.   A Method of Successive Approximations Applied to the Nonlinear 

Integral Equation 

To solve equation ( 3), Bucerius (1950) proposed an interative method which 

consisted of a sequence of applications of the mean-value theorem to the integral 

on the right side. 
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Suppose that  r {t)   is taken as the initial approximation to the solution of 

the integral equation ( and the initial approximations to the ratios of the area as 

Tl     T2 — , —), then the first approximation is 

1 r  (f) 2    1 
r(t)«r (t) + T^/K(t,t')7^--jdt'Sr (t)+ir/K(t,t')r (t«) 

0 |r0(f)|J r^O 
dt« . 

The average value of the quantity   I £  (t1)!     in the interval  0 < t' < 1  is 

3 
denoted by  r  . 

Introducing the notation 
2 

Xl "   3     ' 
ri 

then 

r^O^r^^ + ^/KCt.f^^t'ldf  . 

The second approximation has the form 

I2(t)=r0(t) + T   /K(t,t.)—^df . 
0 Ir^t')! 

If the expression for rA t')   is substituted into it, then 
~ i 

1 1 

where _ 

X2 ="T   ' 
r2 

and K2(t, t1)   is the second iterated kernel. 

For the vth iteration, one will obtain 
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1 1 
Xw(t)=r0(t) + \i;/K(t,f)r0(t')df + Xw\^1/K2(t,f)r0(t')dt-+... + 

1 

2 

v        3     ' 
r v 

K (t, t')   is the vth iterated kernel. 

2 
All  \    satisfy the inequriiity X   <\ =^j, where  h =minr(t)   (0<t<l) 

h 
is the perpendicular issuing from the origin of coordinates to the chord  r, r„. 

2 "^ 
Letting   v   go to infinity and replacing all  \     in ( 6) by — , one may consider 

v h 
the series obtained to be the Neumann series for the equation 

2     1 
r(t)=r (0 + ^- /K(t,f)r(t')df . 

h    0 

A lower bound for the radius of convergence of this series is (Wiarda, 1930) 

I     1   l 2 V^2 - 
\<     //[KC^t«)] dtdt« =3N/10  , 

\ 0  0 / 

or X < X,, where  X.   is the first characteristic value of the kernel  K( t, t1). 

Consequently, if all  X   £ X , then the series ( 6) converges. 

In applying the iterative process described above to the solution of equation 

(3), Bucerius, generally speaking, started from the mistaken assumption that the 

X     do not depend on time, in the sense that they are the same for each orbit. 

Indeed, X   = X (t), and one has to prove the assertion that all r  ^h, from 

which the convergence of the process of successive approximation follows. 
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§3.    Solution of the Nonlinear Integral Equation by the Method of 

Successive Approximations. 

We apply to equation (3) the method of successive approximations in the 

following form. 

We first take  r(t) =r ft)   and define  r.U)   by the relationship 

«•rv    ' 
■El") 'io'" +T  /«t,t')^ df . 

0 r0(f) 

Continuing in the same fashion, we obtain an infinite sequence of functions 

JQ^' Ii^^-'Ml^t)  

which satisfy tl e recurrence relations 

?    1 r    i(t,) 

r (t) =r  (t) + r^ /K(t,f)^p df 
o r   At*) 

n-i 

(7) 

We shall show that the sequence of vectors   (r (t) }*      converges to a 
~n        n=0 

function which is a solution of equation ( 3). 

For the proof, consider the difference of two successive approximations 

~rn(t)--rn-l(t)=T2/K(t't,) 

0 

r    .(t1) r      ft') ~n-l ~n-2     [ 

Lr^   (f) r"!    (f) 
L. n-l n~d       -J 

df 

The difference enclosed in square brackets may be written in the following 

manner 

~rn-l(t,)   V2(t,) 

r3 .(f)    r3  .(f) L n-l n-l     -J 

^-^''-■En-a"'1 

Ci(t,> 

'   ,(t*)-r. ,(1') . , j^2 n^ 
-n-2lt,r   .(t'jr    ,(t1 

n-l        n~c 

1 1 1 

-Vi"'' 
r    .(t^r    -(f)      2    . I% n-l        n-2 r    ,(f) n-2     '-I 
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In so far as 

r 1 jKUjt'Jdt' <■£   for   0 <t <1 , 

lr (t)-r    At)\<~* ~n      ~n-l   ' — 8 
'^n-l^n-Z1 

ln-l 
~n-2 r    ,r    _     2      r   .r    ^     2 

n-1 n-2    r    ,     n-1 n-2   r    , 
n-1 n-2 

and since the difference of two sides of a triangle is less than the third and 

I-——— I £ 1, one has that 
n-2 

2  n
m

<!
X<1

Lrn-l(t,■~r^-2(t,l 

|r (t).r     (t)| <Ir2L^4i 
'~n'      ~n-r  " -  2 mi: min    | 3        3     ^ 

0<t<lUn-rrn-2; 

(8) 

or 
n-1 

^n^n-l^1- maX  U.Ct)-!: (t) 
0<t<l u 2   min   r, 

0<t<l 

(9) 

k=0,l,2,...,n-l. 

Setting 

r  (t)- r     ,(t)  =A    .(t)   , 
~n        ~n-r ~n-l ' 

we note that 

n-1 
£n(t)=£0^)+[r1(t)-r0(t)l + [r2(t)-r1(t)]+... + [rn(t)-rn_1(t)]=r0(t) + ^   A^t) 

k=0 

and 

rn(t)<r0(t) + ^0(t) 
/ n-1 

1 + ™— + ...+ 
2 min i (t) 

L    o<t<l n 
. 2 min  r (t) 
Vo<t<i n 
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The geometric progression enclosed in square brackets converges for 

2 min  r (t) 
0<t<l  n 

<1 . (10) 

Obviously, if condition (10) is satisfied, the sequence    (r {t) }   converges 

to the function 

R(t) =  lim   (r (t)} 
n-*oo 

by virtue of inequality (9), uniformly, moreover, on the interval  0<t<l in 

as much as the estimate (9) is independent of  t. 

Now. 

2 min R (t) 
0<t<l 

<! , (11) 

since (10) is valid for all  r (t), the limit of which is   R( t). ~ n •" 

The function   R( t)    satisfies equation ( 3).    In fact, by virtue of the 

uniform convergence of the sequence   (r  (t)}   to  R(t), by letting  n-,, «  in 

formula (7),  one obtains that 

2,1               S^') 
R(t)  =r (t) + T   /K(t,f)-T df   . 

0 R(t') 

We shall prove that  R( t)   is the unique solution of equation (3) in the 

region 

2 min r (t) 
0<t<l 

<1 (12) 
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Indeed, suppose that there exists another solution   £(t)   which satisfies 

condition (12).    Then, by performing a calculation similar to the preceding, one 

obtains that 
R(f) 

P(t') 

R3(f)     pV) 

4|p(t,)-R(t')l 

min   [R3(f),p3(t')] 
0<t'<l 

Consequently, 

R(t)-£(t)| = T   jK{t,t') 
0 

RCf)     p(t') 

R3(t')    p3(t') 
df<T 

T2 |R(t)-E(t)| 

min [R3{t),p3(t)] 
, (01t<l), 

0<t<l 

or 

R(t)-£(t)i   l-j <o 
min  tR,(t),P (t)] 

0<t<l 

The quantity in parentheses is positive,  by virtue of the satisfaction of 

conditions (11) and (12).    Dividing both sides of the above inequality by it,  one 

obtains that 

|R(t)-p(t)i  <0,       (0 <t<l) , 

from which it follows that 

(10) 

R(t)-p(t)| =0 ,        (0 <t <1). 

We now derive a condition which guarantees the satisfaction of inequality 

It follows from equation ( 7) that 

rn(t)>r0(t)- 
8 min r     (t)) 
0<t<l 

(13) 
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It is easy to seen that  r (t)   Is larger than the altitude  h  from the origin 

of coordinates to the chord joining the points  (x., y , z )   and (x , y , zj . 

Then, 

min   r(t)>h =  
0<t<l   n 8 min r    ,(t) 

(14) 

0<t<l 
n-r 

Assume that 

min   r (t)>kh,     (m = 0,1,..., n-1) , 
0<t<l   m 

(15) 

where   k < 1   is a positive number which we shall define below.    Note that this 

inequality is valid for  m = 0 .    We assume that it is valid for all   m   to  n-1, 

inclusive.    With the help of inequalities (14) and (15),  we obtain that 

2 
min   r (t) > h -• 

0<t<l 
n      — 2  2 

8k h 

Requiring that 

h - 
8k h 
TT^h, (16) 

we obtain that     min   r (t) ^ kh,  so that we have proved this inequality for all 
0<t<l  n 

n   by means of the principle of mathematical induction.    Thus, by virtue of (10), 

the inequality 
2 

—TT<1, (17) 
2k h 

is a sufficient condition for convergence. 

4 
Both inequalities (16) and (17) are satisfied if one chooses   k • — . 

— 5 

Actually, (16) is a consequence of inequality (17) if one requires further 

that 
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from which 

or 

.      2k h    ^ i. h--rr-kh' 
8k h 

l-^>k, 

Consequently, the process of successive approximations described above 

converges to a solution of our integral equation in case that 

.3 . 125    2 
h   -128T    ' 

for which 

4 
min  r (t) > - h . 

0<t<l n     "5 

We now obtain an estimate for the error committed if the calculation is 

halted at the nth approximation: 

oo n 

lr(t)-r (t)| < T.  Au =-p A    , 
~       ~n       —,^     k    l-o     o ' 

k=n 

where 

a = 
125   T 

_     .      3.   .   - 128   ,3 
2 mm r (t) h 
0<t<l   n 

Since 

Ao=T / H t, f) 
ro",> 

dt1 <44<^h 
8 min r (t) h 
0<t<l 

finally, 
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125   T 

1'        \128   h3 

Ir(t)-rn(t)|<4l-h^ h 

125 125   T__ 
128   .3 

n 

§4.    The Application of Newton's Method to the Solution of a System of 

Nonlinear Integral Equations. 

Newton's method,  sometimes called the method of tangents, is one of the 

most effective methods for obtaining solutions of algebraic equations in the case 

that an initial approximation is known for the value of the solution.    The successive 

approximations are defined by a formula of the form 

x   ., = x   - «V 
n+1      n    V{x )      ' 

n 

This method extends to systems of algebraic equations.    It may be applied 

(KantoroviS, 1949) to classes of arbitrary nonlinear equations, in particular,  to 

classes of nonlinear integral equations. 

We shall apply Newton's method to the system of nonlinear integral equations 

1 
n^ t) = T£( t) -1-T / U^ t, t«, n^ t«), n2( t')) dt« ,' 

n2(t) = n^ t) -1-T2/ U2(t, f, n1( f), n2( t')) dt' , J 

(18) 

for which initial approximations to the solutions may be taken to be   n. (t), n?( t) 

To obtain the first approximations, one adds to  n, (t) , n (t)   the 

corrections 

^2 =IlI(t) -n°(t) , 

A1 =^{t) -n°(t)   , 

^668 -13- 
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determined from the linear integral equations 

;-T^/(l5l4J+(^)04}d,,=T7lü',t't,,-?<,,,'n>,,,dt' - 

^T2/((S^V'+15U}d,,'T^o/Iu2(t•t,•-l<t,,^<t,,,d,• 
(19) 

2 2 
The second approximations   n, (t), n  (t)   will be obtained by determining 

2      2 
A   , &     from the system 

t--m* 0 1 '1 

au. 
 < 

, 8n, I A2]dt,=-2( ^ "^ ^ +T2/ U2(tj ^'-^ t,) '-2( ''^ dt« 

with 

n^t)  =n1
1(t) + Aj , 

n^t)  =n2(t)+ A2 ' 

finally,  the nth approximation is determined by solving the following system of 

linear integral equations: 

1       ^UanlLl    1   I    n2in-l   2J 

= n°(t) -n^WT^U^tSn^t^n^'Wdt' , 

0  v.'-     1 y n-l 2 'n-1     ^ 

> (20) 

0...       n-L n-L n-L 
^n^O-nJ   (t) +T   / U2(t,t',np(f), 112   (t'))df . 
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In the case of interest to us, system ( 5) f the functions   U    and the 
8U.      8U2 

derivatives   -— , ——  (i = 1, 2) have the following form an    '    an '   ' 

K(t,t')n(f) 
U   =  

[n1r1'+n2 + 2n1n2(r1r2)] 

K(t,t')n (f) 
U   = =  

[ni2rl+n2r2+2nin2(V2)] 

3/2 

3/2 

aUj SKU.t'Jn^t'Hn^ + n^r^)] 

^r2
=- 1 ' 

aUl    uuV)f      3n1[nIr1
2 + n2(r1r2)]^ 

an   "        Si1" 2 J ' 1 r       ^ r ^ 

au2     3K(t,t,)n2(t,)[n1r1%n2(r1r2)] 
_^ = _____     _     _____ 

I 

•n- 3      \ 1 " 2 J  '   J 2        r        ^- r y      * 

(21) 

moreover. 
max   (n (t), n (t) } ^ 

/^(..t^dfiil0^1 

min   r (t) 
0<t<l 

M' . ... ...     max  {nf(t),n^(t)} 

Ö   ani      -8 

i au. . 

o   anj 8 

min    r (t) 
0<t<l 

M2  max   (n2( t), n2( t) } 
0<t<l     i f 

5 
min   r (t) 

0<t<l 

(22) 
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t 
where  M    denotes the greatest of the four following quantities: 

arj+r^ + Ur^)!, 

r2+l(ii.i:2)l» 

rl+ \l£i£2>\* 

r2+2r2+l^1^2)|- 

We shall obtain the conditions for convergence of the process of successive 

approximations defined by formulas ( 20).   We write them in the following form: 

J(t,t', n^f),.- 
0 

n^t) =n°(t)+ T2/ U^f, „"-1^,^ nn-l(t,))dtl + 

+  T 
1
J7

8U
I 

A% 
/aui ^1 

2 Vl    dJ 

nj(t) «n^^+rVu^t^Sn^t^.n^t^df + 
0 I * 

2rindU2 \        n   f9U
? ^1 

(23) 

X 

n-1 Subttactlng „^(t,   from  nn(t)   and „n-1,,,   £rom    „(t)j ^ ^^ 

that 

-16- 
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^=T2
/[ 

U
I< t» t'» "r^ v > n2"1( ''^ - ui( *> t,' nr2( t,) * n2"2( t,))] ^ - 

-■'I 0  ^ 
ianl'n-2   '       lan2in-2   2   J 0 0 v     1'n-1       v     Z'n-l     ^ 

n     2 n-l^..     n-L n-2,...     n-2. A5=T7[U2(t,f,npf),npf))-U2(t,f,nJ1-<:(f),n^£(f))]df - 

^],aU2l       An-l/aU2l 

0 <0      1 /n-2 

n-1 2,7/8U2 
'8U. 

2,n-24rr-7KLAM^, n-1    ^ 

Using the notation 

An=    max   (lAj1!, IA^I), 
0<t<l 

n / n     n, n   =   max   ^n. , n ) , 
0<t< 1 

and representing the difference 

U.( t, f, n*'l( f), nn
2-\ f)) - U^ t, t», nj1-^ f), n^-2( t')) 

by Lagrange1 s formula in the form 

9U.      .   au. 
 L A"

-1
.  L An-1 

9^     1 dn2    2     ' 

au. 
where the derivatives  -— (j = 1, 2)   are taken at some intermediate points en, 

nni-nr1+9n1'
nr1*nr2». iv^1' (i"'2'- 

one has that 

#668 -17- 

~r 



1 

^<-2 

x,2 //   n-2.2   .   n-1.2 ^ 
M     max {(n      )  , (n     )   / 

0<t<l 
^"^ 

..2 .   n-2.2 
M   max    (n      ) 

, T       o^t< 1 
2 t      

5 
min r 

o<t<i n-2 

»«2 /   n-1.2 M     max (ii     ) 
An-1 , T 0<t<l  An 
A      +T  —-^ A    . 

min  r 
0<t<l 

n-1 

From this, it follows that 

,2            ,/   n-2.2 .   n-12, ..2           .   n-2.2 
M    max  {(r^     ) »(n,     )  ) 2 M    max *—     ^ 

T_       0<t<l     T 0< t<.l      n-1 
2                  ,       r 5         5    , 2.5 

An< 

min    (r    _, r" ,} 
o<t<i    n-2   ^ 

min r 
0<t<l 

n-2 

2 
..2 .   n-1.2 
M    max  (n     ) 

0< t< 1 

min r 
0<t<l 

n-1 

v 
2»*2 //     n-2x 2    /     n-l% 2\ T M     max    i(£      )   , (H     )   ' 

0<t<l 

min {r     _, r    .} 
o^t<i   n-2    "^ 
..2 .   n-1.2 

_ M    max (11     ) 
1 T        o^t< 1  

2 .5 

A-^ 

2^2        / K2 
T M    max  (n ) 

0<t<l 

min    r 
0<t<l   k 

1- 

_ M    max  (ji ) 
T 0<t<.l 

min    r 
0<t<l 

n-1 
min   r. 

0<t<l 

n-1 

A1     (24) 

^\ 

k = 0,1, 2,..., n-1 , 

under the hypothesis that 

M    max   (n ) 
0<t<l 

min    r 
0<t<l  K 

< 1 . (25) 
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We shall prove by mathematical induction that every 

r   >kh     and    n^k'n.0 , 

where   k   is a positive number less than  1, and  k'   is a positive number greater 

than   1, 

For  n = 0, these inequalities are obviously valid, in so far as  r« > h. 

We shall assume that it is valid for all r   and jr   for  j = 1, 2,..., n-1, 

so that 

fj I kh. ilj Ik'n0   (j =1,2,..., n-1) . (26) 

If it follows from this that the inequality ( 26) is satisfied for j = n, then 

it will be proved for all  n. 

By hypothesis, 
2    A/r2ui2  0 

T     M k'  n 
2 5  5 

k h 
< 1 (27) 

by virtue of ( 24) and ( 26) 

2^2. i2 O2       "N n-1 
T M  k1  nu \ 

An<l 

'-T 

5  5 
k h 

T2  M2k'2n0 

A1, 

k h 

(28) 

where, as can be seen from equation (16), 

2  0 
1 T   il 
8 3 

*' < 
ro 

1 T
2

M ^ 
1 

2 5 

(29) 
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and  r    and  n    satisfy the condition 

T2M2n0 

<1 . 

Equation ( 23) and relationships ( 26), ( 28),  ( 29) allow one to write the 

following inequality: 

2              n-1 2   2           ,   n-lv2 
T   max   n_ T M    max (n.     ) 

|nn   O^i^aiLl     1 g<t<L  An     lLJin     + 

min   r    . mm   r                                   k h 
0<t<l n~ 0<t<l 

+ 2 

2    2    2 0 
1 TCM k» u 

k h 

2    2    2 02        \n~l 

T  M  k' H \ J_ 
2,-0 

1   T k'n 
5  5 

k h 
8 U3K3 

k h 

i    I_ M  k1 ü / . 
2 . 5. 5 / 

T2M2nQ 

It is required that 

or 

2^2, ,2n0 
T M k* ü 

k h 

,    r2 M2k'2n0 

2        . 5. 5 
k h 

3     
2»>r2, f2n0 

3. T M k' JI 
2      iA5 

k h 

< 1 

< 1  . (30) 

Note that inequality ( 30) guarantees the satisfaction of ( 27).    Now, 

1 in     0,     I  T2k'n0      . j   1 

k h" 

L     2 5 
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and 

n^  0 . i  T2k'n0 

k  h 
-1 1 

,    1 T
2M2n0' 

2       _5 

We obtain an estimate for  r   , 
n 

n "     .   n ,   n     0. .   n     0 0 0 
-rn=WVr2=<nl-nl'-V(Vn2'Wl+n2J:2' 

■ /   n       0»      . /   n       0, 'io + f^ -n1)il + (n2-n2)£2 , 

k h -i 
i TVH0' 

(r1 + r) 

and 

i    2, , 0 
r   >r   .1 T k'u 
n- 0    8    , 3. 3 

k'h' 
-I 

1 T Vn0 

1 - 

(r1 + r2)   . 

In so far as   r   > h, 

r   > h - 
1 T2k.n0 

n-"    8 ,  3U3 

k h 
'4 i 

,    1 TW 
2 5 

(r1 + r2) 

0 

We determine   k   and   k'   so that 

0     1 T2k'n0 

k h 
-I 1 

,     1 T2M2n0, 

"2 5 

< k'nv (31) 
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Then £  .1 ^'ü » r   ^.^h» which proves inequality ( 26) for arbitrary   n. 

Inequalities ( 31) and ( 32) may be written in the following way: 

k' > 
1 T

2 

8kV 
I*1 i 

I 

i 
1 TV/ 
2 5 

ro      J 

(33) 

,     2, .0 
1 T k'n 

k  < 1 _J.      5 - 
—        4       3   3 

k h 
'4 

i - 
1 T2M2n0 

(34) 

If  k   and   k1   may be chosen in order that ( 30), (33), (34) are satisfied, 

then the process of successive approximations defined by formulas ( 20) converges. 

From ( 33) and ( 34), assuming that equality holds, k  and  k'   maybe 

determined by the method of successive approximations,  taking   k = k' = 1   as 

initial approximations. 

It is possible to obtain convergence conditions more simply, which,  however, 

are cruder. 

If one chooses initially that 

1 TV/    <  1 
2 5 2  ' 

ro 

then for this,  the satisfaction of inequalitirs ( 33), ( 34) is sufficient to 

guarantee the satisfaction of the following inequalities: 
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k.> 1  
,.A_lL 24 kv 

k< !  
- 2.0 5  T k'H 

k h 

1 3 
Setting   k =—    k' = —,  the convergence conditions take the form 

h3 > 10T
2
 , 

h5 > 108M
2

T
2
  . 

By virtue of inequality ( 24),  if condition ( 30) is satisfied, the sequences 

of functions   (n  },  (n  }   converge to functions   n., n   , which are solutions of 

the system (18), 

One may convince oneself of this immediately by letting   n -* o0   in 

equations ( 20). 

The legality of passing to the limit under the integral sign follows from the 

uniform convergence of the functions in the integrand,  in as much as the estimate 

( 24) is independent of time. 

We shall prove the uniqueness of the solution obtained in the region 

2    2 2 
T  M    max ji 

3 0<t<l ^ . 
2 min   r^ l ' 

0<t<l 

Suppose that there are other solutions   n!, n1   which satisfy condition ( 30). 

Consider the differences 
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nj - rij = T / [ Uji t, f, nj( f), n'^ t')) -U^ t, t«, n^ t'), n2( f))] df , 

n,
2-n2=T J [U2(tlt',n;(t,),n,

2(t'))-U2(t,t,,n1(t
,),n2(t,))]clf . 

Replace the increment of the functions   U (t, t1, n!( t1), n1 (t')) -U (t, t', 

n (t'), n (t'))    by the differential at the point   n" = n  + 6   ( n! - n ), 
x. c» ix        n      i i 

|e    |  <1,    (1=1,2)   and use the inequality ( 22) for 
ni   " 

In'-nj   =   max   (| n'-n I, | n1 -n  | }, 
0<t<l     1      i ^      ^ 

which may be written 

2    2 2 
T M    max n_ 

i     \s l 0<t<l       I   ,        I 

min    r 
0<t<l 

or 

T M    max 
,      i , ,     1 0<t<l 

i\ 
n'-n    1 -r 

2 5 
mm    r i 

0<t<l J 

< 0 

In as much as the expression in parentheses is positive,  one obtains 

I n1 - n | _< 0 , 

which,  by the virtue of the non-negativity of   In/ - nj    is only possible if 

in' - n\= 0 
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In order to obtain an estimate for the error committed if the calculation is 

stopped at the nth approximation, we consider the difference 

oo      .        n-1     . k    a A 
in - nn! =max (l^-n"!, | n^n^l) < 2J   

A
   

=7r^"A   » 
k=n 

where 

a = 

T2M2k-2n0 

k5h5 

2      2    2 0 
T    M k' ü 

^ 

K   and   k'   satisfy inequalities ( 33), (34), h   satisfies ( 30), and  A'  satisfies 

inequality (29). 

: 

• 

§5.    The Case of Perturbed Motion. 

If in addition to the attraction of the central body,  a force   mF   acts on 

the planet or satellite, then,  instead of equation (1),  the following equation 

of motion holds: 

2            llV 
r(t)  =k (1 + m)— + F(t)   . 

r (t) 
(35) 

The corresponding integral equation may be written in the form 

1 'r(f) 
r(t)«r (t) + Ttf/K(t,t')(—--FU 

u o ^(f) 
'Idf . (36) 

If the force   mF   is the perturbing action of a planet with mass   m     and 

radius vector  r   , equation ( 3 6) takes the form 
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r(t)=r0(t) + T2/K(t,f) 
r(f) m 

0 \|r(f)|3      1+m 

Kf)-!  (f)       r   (f) 

r(f)-r(t')r     rV')_ 
»df . (37) 

Set 

.r(t)  =nAt)rAn{t)v   +n{t)r     , 
1     ~1     2     ~2      s     ~s 

then equation ( 37) reduces to a system of three equations for the quantities 

njU), n2(t),  ng(t): 

0 2rl nl(t,, 

n^t)  «nj'CO + T^/Kd,!')- 
6 r^t') 

m 
1 + rV) 

1+m|r(t')-r (f)|3J 

1 njt^r      m 
n (t)  =n2(t) + T2/K(t,t1)-^    1 + 

0 r(t,)L 

r^t') 
1+m lr(f)-r  (f)|3J 

~s 

dt' 

dt« 

Zr1 rns(t,)       ms       "s^')-1 
+ 

0 
n (t) = T  /K(t,t') 

m s       1 

r3(f)     1+m  ir(f)-r  (t1)!3  ' 1+m   r3(t'). 
~ ~s s 

dt' 

which may be solved by Newton's method. 

As initial approximations one may take   n. , n., n    =0   as in the case of 
i      c     s 

unperturbed motion. 

§6.    Determination of Orbits from Three Observations 

Let t , t , t lt\^.t2 — t3^ denote the times of three observations chosen 

for the determination of an orbit. Each of the three observations permits writing 

a relationship 

r . = p.e , - R,   (i = 1, 2, 3) , (38) 

where   p e .   denotes the geocentric radius vector of the planet (here, e     is 

the unit vector indicating the direction to the planet,  p    is the geocentric distance), 
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and   R,   is the geocentric solar radius vector, •"i 

For the determination of the orbit given the directions   e     to the planet 

and the geocentric solar radius vectors   R.   (i = 1, 2, 3)    the boundary values 
~ i 

r    and  r     may themselves be unknowns, and have to be determined from some 

system of equations. 

To obtain these equations, one uses the relationships which connect the 

geocentric coordinates for three given times 

r 0 = nAt) r. + nj t Jr. ~2       1    2~1       3    2-'3 

or, by virtue of ( 38), 

p2S2-52
=^t

2HPiSr51) + n3(t2,(p2S2-52)- 

[e -.ej [e.e -J 
Multiplying this equation first by       r ^   ^—j—, then by 

e,[e. e-J 
~ 1  ~ <i~ 3 

e.f e _e.]   ' ~r ~ 2~3 
-,  one 

obtains 

n^P, =|n1(t2)R1 + n3(.2)R3-R2)-^Lr, ^ 

n3{ta,p2=(n1(t2)R1 + n3{t2)R3-R2J-M|-r, 
~ll-'2~3J     J 

(39) 

£,[£?£j *0 

The solution of system (39), together with the system 

n         ? J                       ni(t,) 

nAt)  =n,(t) + T;/K(t,t•) l- r-dt'  ,^ 
1 1 2o      '•     |3 n^t'^+n^t')!^ 

0             2rl                                   n^t', 

n (t)=n (t)+T   /K(t,t')  
o ln(f)r+n (f)r 

-df 0 

(40) 
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determines   p.   and   p  , and, consequently,  t.   and   r   . 

As the Initial approximation for the ratio of the area of the triangles, one 

chooses   n  , n  , which are ratios of intermediate times 

* 

0 Tl 0     T3 n.  =—,   n   = — 
1 T2        3     T2 

where 

^ =kN/l + m {t3 - t2)   , 

T2 =k\/l + m (t3 - tj)   , 

T3 = kN/l + m (t2 - t )   . 

Substituting them into equation ( 39),  one obtains   p., p     in the first approxi- 

mation. 

Approximate values of  r. ,r^   are determined with the aid of relationships 

( 38),  and equations (40) are solved with them to obtain new values of n., n , 

and so on.    Therefore, equations (38)-(40) together permit the determination 

of the geocentric distances   p , p , p , and, consequently,  the geocentric radius 

vectors £,>£-,»£,   of the planet.    Knowing these values,  one may determine 

the elements of the orbit in the ordinary way. 
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